
IEEE CONSUMER ELECTRONICS MAGAZINE

1

Abstract— Mobile apps analytics represent a core set
in the mobile industry to extract relevant data with the
aim of modeling user’s behavior. Current solutions to
detect user’s activity in the mobile apps are usually
oriented to analyze the resulting information rather
than improving the way the information is obtained
and tracked within the app. They are based on a
continuous app code modification schema, which
implies high development efforts and a clear problem
to implement changes without compromising the time
to come back to the market or cause problems with
dependencies in the user’s app updates. In this article
we analyze the suitability of Aspect Oriented
Programming for providing a more efficient way to
detect user’s activity inside apps, which may lead to
obtain user analytics. We propose an innovative
approach that relies on an in-app solution based on the
embedding of a specific library and a configuration
file in charge of setting up the events to be tracked in
real time, without additional code changes in the app.
Thus, this new schema will reduce the time and effort
costs derived from the integration of 3rdparty trackers.

I. INN-APP USER’S ACTIVITY DETECTION OVERVIEW

With the raise of the use in mobile devices and apps[1],
the study of the user path within these is a must for the
mobile market since it provides essential information to
identify trends and understand behaviors. Nevertheless,
the central challenge in this scenario has always been
focused on the analysis of the obtained data[2], leaving
aside the way they are collected. This is usually
considered as a programming issue since it depends on
how to integrate third party libraries, also known as
trackers, with the app.
In the current scenario the obtained process is clear: apps
owners analyze which are the characteristics points to be
detected inside the app, and then the developers include
marks in the code to track users’ actions. According to
this schema, the inclusion of these marks involves code
changes that lead to new releases of the application that
should be updated in the client side to take effect.
Moreover, it has to be repeated every time a new point has
to be detected, increasing the total number of app updates
which are usually related to modifications for errors
correction or new features integration.
This process implies an increase of costs in terms of time
and money, thus the dynamic track of the user behavior
inside mobile apps can only be assumed by those

stakeholders who can afford this extra effort. It can also
imply a loss of data if the user skips the app update, so the
total track in real time becomes an almost impossible aim.
In this article, we propose the use of Aspect Oriented
Programming (AOP) as a new approach for improving the
user mobile application path detection by easing the
integration of the measured points which implies a costs
reduction in terms of time to market and efforts and an
increase of the points detection control and management.

II. RELATED WORK

A. Mobile app analytics: initial considerations

Mobile apps analytics usually refer to data collected while
the app is being used. Through analysis, these data
provide lots of insights into user behavior together with
information about overall app performance. When a
user’s action detection is done, a lot of information can be
derived, mainly depending on the specific application.
From generic usage statistics to particular information,
such as the queries users enter into the e-shop search bar,
can be provided if the measured points are correctly set.
Several trackers are typically used when talking about
mobile analytics, which can be classified among three
main groups [3]: firstly, the advertising trackers, such as
Google AdWords and Inmobi, which represent almost the
65% of the trackers used, are mainly serve within in-app
advertisements and they collect personal data from the
users.
Secondly, the analytics trackers (24% of use), such as
Google Analytics(GA) and AppsFlyer(AF), which mainly
track users’ actions inside and across apps for client
attribution and other marketing purposes. Finally, the
utility trackers (11% of use), as Bugsense and Crashlytics,
focused on assisting developers to track bugs.
According to this, our article is focused on the integration
of analytics trackers, which obtain different inputs for
improving the application overall performance and
increase the user’s experience by providing essential
feedback to different schema recommendation [4].
There are several maintenance activities that must be done
to maintain the high quality and stable performance.
These activities are divided in four groups; adapt apps to
operating system updates (adaptive maintenance), adapt
apps to new technologies (preventive maintenance), fix
errors and modify functionalities (corrective
maintenance) and use the user feedback to obtain more
appealing solutions (perfective maintenance)

By Francisco Moreno, Silvia Uribe, Federico Álvarez and José Manuel Menéndez

Extending aspect-oriented programming for dynamic
user’s activity detection in mobile app analytics

Draf
t. P

rep
rin

t c
op

y

IEEE CONSUMER ELECTRONICS MAGAZINE

2

Most of them are needed to assure continuous
improvement and new features to be recognized by
current and potential users but, due to the high associated
cost of these modifications (representing about 40%-70%
of the total cost of software life cycle [6], having the
corrective maintenance a 20% of this effort), an efficient
management and planning of them is needed.
Considering software maintenance as “the modification
of a software product after delivery to correct faults, to
improve performance or other attributes, or to adapt the
product to a modified environment” [7], current solutions
for user path analysis within mobile applications can be
seen as one of these tasks. In fact, these activities can be
classified as corrective tasks since they comprise code
changes for detecting different user’s actions but they do
not really correct any malfunction of the application. For
this reason, finding another way to include the associated
measure points that does not imply a continuous and
iterative code modification process could be an effective
way to avoid overloading the maintenance scenario,
allowing an efficient effort allocation for the appropriate
application adjustment.

B. Current approaches and need for a new dynamic

solution for user path analytics

Trackers, including the analytics ones, usually provide
their SDKs as libraries that can be easily embedded into
apps. Nevertheless, this integration implies direct code
changes in the application. In particular, in the case of
users’ tracking, the changes can be due to the different
actions that can be done inside the app that reveal
important information for marketing analysts. These
changes must be done immediately in order to obtain real
time information. These two requirements are essential
for an efficient user tracking, and they represent a real
challenge that must be taken into consideration.
As it is explain in [8], current solutions require an initial
analysis of the events to be tracked at the very beginning
of the design phase in order to include the related code in
the app. Moreover, the modification of these events
implies a refactorization of the app each time a new event
needs to be tracked [9], following a cycle schema that
repeats itself. Nevertheless, this approach does not
guarantee the success of the process since there is also a
critical point: an app update from the user is still needed.
In this context, a more efficient solution for user tracking
is needed.
On the other hand, it is also important to consider the
development and deployment time that every update
involves. In this context, a quick code modification can
imply a late new version due to different factors. A change
in the development team, an error in the specification or
even the time needed for market publication can cause an
important delay in releasing the app, reducing the window
opportunity of the change.

Finally, frequent modifications needed by current
solutions for allowing a dynamic mobile app analytics
also present another important problem: user’s behavior
in relation to app updates. In this respect, although users
are aware of mobile app updates, almost half of them do
not enable automatic updates (due to several reasons: lack
of memory space, phone and app crashes, security and
privacy concerns, and feature and functionality loss) [10],
resulting in a loss of clients. Moreover, frequent updates
may be discouraging, making that almost 35% of the users
uninstall apps because of too many releases. Therefore, a
solution for dynamic tracking of the user’s behavior,
which does not involve any update of the code, will be an
efficient answer for mobile apps analytics. In this regard,
this solution should not only reduce the related efforts, but
also remove the user’s dependence in order to provide an
agile and real time response that makes the user tracking
more affordable for different mobile stakeholders.

III. MANTRA: A NEW IN-APP USER ACTIVITY TRACKING

APPROACH

A. Aspect-oriented programming

According to its own definition [11], AOP is an additional
programming paradigm that extends the traditional
object-oriented programming (OOP) model to improve
code reuse across different object hierarchies. AOP
modularizes the crosscutting concerns into units, called
aspects, and then separates them from the modules that
implements the system basic functionality, that is, the
primary business logic, allowing to clearly express
programs by including appropriate isolation, composition
and reuse of the aspect code.
 TABLE 1. AOP MAIN CONCEPTS

Concept Description
Crosscutti

ng
concern

An aim that a program wants to achieve, it
should be scattered among different classes
and methods.

Aspect A modularization of a concern that cuts
across multiple objects.

Join point A well-defined position in a program, such
as the execution of a method, the handling
of an exception, etc.

Advice A class of functions that can modify other
functions and that can be applied at a given
join point. There are different types of
advice: “around”, “before” and “after”.

Pointcut A set of join points whenever reached the
corresponding advices will be executed.

Weaving

The process in which an aspect is added into
an object. It can be executed during the
compilation time or during the running of
the program.

Although in 2001 the MIT announced AOP as a key
technology for the 10 future years, it was not widely
adopted during that period, mainly because of the

Draf
t. P

rep
rin

t c
op

y

IEEE CONSUMER ELECTRONICS MAGAZINE

3

maintenance, validation and evolution difficulties [12].
Nevertheless, this trend has changed recently, expanding
its use to many different fields, such as software testing
[13] and web applications [14] among others, due to a set
of important advantages, listed below [15]:
- More accuracy in software development, especially in

changing and upgrading: AOP provides and efficient
way to modularize the code by gathering what deals
with the same aspect, avoiding redundancy and
making that each part has a specific aim.

- Steady implementation by handling each aspect once.
- Reusability enhancement, since AOP allows isolating

core concerns from the crosscutting ones, enabling
more mixing and matching between them.

- Skill transfer enhancement: AOP concepts are
reusable and transferable, reducing developers
training and implementing time and cost.

For doing this, AOP introduces a set of concepts that
enables its application, as can be seen in ¡Error! No se
encuentra el origen de la referencia.. As it is going to
be explained, they provide an encouraging context for
defining an innovative way of embedding the marks
needed for user’s track. In this regard, AOP allows
facilitating this integration by removing the code changes
and determining a seamless client-server communication
for real-time track, which results in a less effort-
consuming solution.

B. Dynamic user behavior tracking within mobile apps:

our approach

Our approach is mainly based on a two-element
combination: a server-client communication based on
JSON file exchange, and an in-app library for tracking
management, called MANTRA (Mobile ANalytics
TRAcking).

Fig. 1. Approach for in-app user tracking based on AOP

1) Architecture of the solution

Based on the AOP concepts from ¡Error! No se
encuentra el origen de la referencia., our approach
architecture can be seen in Fig. 1 and it is composed by
the following elements:
- Aspect: each users’ action delivered from the client

side to the trackers. It is not an intrinsic app function
but a common activity for them.

- Advice: the code that sends the info to the trackers,
that is, the third party scripts for analytic trackers, such
as GA or AF. The advice is injected in run time into
the code, as defined in AOP.

- Jointpoints: the entire set of methods from the app
where an advice can be executed.

- Pointcuts: the list of events to be detected inside the
app where the library is included. These elements will
be dynamically defined and they will be sent to the app
within a JSON file by means of a push notification or
via HTTP. At the same time, the app will send this
JSON to the library in order to configure the pointcuts.

2) Workflow

The aforementioned elements comprise the core of this
innovative solution and can be properly combined in
order to define a new workflow. This workflow is
composed by three main phases. The first one is related to
the integration of the MANTRA library within the app
and to the JSON initial configuration (which contains the
events to be detected), together with the upload of the app
to the market and its download to the user’s device. The
second phase is related to the acquisition of the data from
the user’s activity inside the app and the reconfiguration
of the JSON in order to change the events to be detected.
This updated JSON can be accessed by the app through
different options: push notification, via a direct delivery
within a static frequency model, etc. The final phase is
related to the data compilation and delivery to the
analytics trackers, which will be in charge of analyzing
them and obtaining the corresponding overall results
about user’s behavior.
Considering this workflow, the need for direct changes in
the code app is reduced to only once at the beginning of
the cycle. This implies that there is only one compilation
of the app and one publication in the market, reducing the
time and effort to obtain it. Thereafter, the dynamic
change of the events to be detected is done via a JSON
file delivery from the server to the app, processing it
inside the app thanks to the AOP capabilities. This JSON
can be updated as many times as needed, and the changes
are processed in real time, without recoding the app.

3) Tracking parametrization and integration

To configure the app, the MANTRA library provides
different methods to set up the trackers credentials and the
JSON url (methods init(GA/AF,cred.) and
setAspects(JSON)).

As mentioned above, the exchanged JSON file is one of
the two main pillars of this approach. This JSON mainly
includes the set of events to be detected, but it can also
comprise two more elements:
- A list with the different analytics providers that may

be enabled in the application.

Draf
t. P

rep
rin

t c
op

y

IEEE CONSUMER ELECTRONICS MAGAZINE

4

- A set of static and dynamic variables for the tracking
execution that has to be sent from the app to the library
before the pointcut execution starts to take effect.

Concerning the integration, the configuration of an event
requires specifying the name of the class and the function
where the event is located, as well as its type and other
additional data in order to be well-processed. In this
context, the user id can be sent as an additional variable
and can be used to link the information between different
trackers or different mobile platforms (iOS, Android,
etc.). Finally, regarding the development of the
MANTRA library, we have made use of two specific open
code solutions for AOP paradigm implementation:
MOAspects for iOS, and AspectJ for Android.

IV. SOLUTION ANALYSIS AND DISCUSSION

A. Experimental Setup

We have designed a simple experimental mobile app for
applying the proposed solution. This app comprises two
main screens. The first one has two buttons and one label
that shows the number of times the first button is clicked
and the second button shows the second screen when
clicked. The second screen has one button to go back to
the first screen. This app must track the following events
with GA and AF:

1. First screen is loaded
2. First button is clicked
3. Second button is clicked
4. Second screen is loaded
5. Button in the second screen is clicked

Then we defined two main variables: a global one for all
the events that contain a string, and a dynamic one to be
sent when the first button is clicked specifying the number
of times it has been clicked.
For testing purposes we have designed an app life cycle
where the tracking needs change. Thus, these changes are:

1. Change the global variable sent with all the events;
2. Stop sending the dynamic value when the first

button in the first screen is clicked.
3. Stop tracking with AF.
4. Start sending the dynamic value again.
5. Start tracking with AF again.

A skilled developer implemented two different versions
of the app, the first one using the standard
implementation, and the second one using AOP and
MANTRA library. A comparison between both methods
is shown in Fig. 2 The development of the app was
divided into a list of tasks, and the developer was timed
while doing the tasks and implementing the changes. The
time invested in tasks that needed technical skills and the
tasks that didn’t were also measured in order to provide a
qualitative and quantitative estimation about the related
costs during the life cycle of the app.

Fig. 2. Standard vs. AOP+MANTRA implementations

B. Results: time and effort comparison

Fig. 3 right shows the time spent developing and setting
up the apps during its life cycle. The Y axis represents the
time in minutes, and the X axis represents the life cycle,
where 0 is the initial development of the app and 1-5 are
the changes defined in the previous section.
As seen in the figure, even when the time invested in the
stage 0 is bigger in our approach, this difference is
compensated while applying the changes, due to the fact
that the time spent in them become significant smaller. At
this point it is important to note that this comparison is
done only with the development time and not considering
the time to market (in such case, the difference would be
even higher), and considering only 5 changes during the
entire life cycle while, in a real case, the number of
modifications could be bigger.
Thus we can confirm that the proposed solution provides
a new method which requires less effort in terms of
development time for managing the changes needed to
dynamically track user’s activity inside mobile apps.
On the other hand, Fig. 3 left represents the time, in
percentage, spent developing the app and implementing
the changes. As seen in the figure, the time spent in tasks
that need technical skills is significantly smaller in the
AOP+MANTRA solution than in the standard one, which
also means a total cost reduction.

Fig. 3. Development performance comparison: technical/no
technical skills needs (left), time effort along life cycle (right).

To estimate the impact of the library in the performance
of the app we used the Android Studio profiler to compare
the CPU and Memory usage. As seen in Fig. 4, the cost of

Draf
t. P

rep
rin

t c
op

y

IEEE CONSUMER ELECTRONICS MAGAZINE

5

using the libraries is minimal. Concerning disk
occupancy, the app only takes 3.44 extra MB.

Fig. 4. Android app performance comparison: CPU use (left)
and memory use (right)

V. CONCLUSIONS

According to the obtained results, the difference on
development and maintenance time (regarding user
activity tracking) is significant, due to the fact that our
approach decreases the time needed to make the changes
on the events to be tracked within the app. Another
advantage is that the app resubmission to the app is no
longer needed, which usually adds time on top of the
development time. Considering this, our solution may
save 2-5 hours for android apps and around 3 days in
Apple store in every single modification.
Other consideration is that tracking changes can be done
by users with no technical skills by easily and manually
editing the JSON, or even with a graphic interface. In this
regard, Fig. 5 shows a cost estimation of each step of the
life cycle if all changes would have been done by a
qualified developer (considering an average salary of a
US developer in 2018). As we can see, using the
AOP+MANTRA solution for tracking the events within
the app may save development efforts.

Fig. 5. Accumulated developing cost

Finally, and considering the previous results, it can be
stated that one of the main innovations of this work is the
application of the AOP paradigm to a new field, such as
mobile app tracking, allowing a more efficient mobile
apps development and maintenance cycle.

ACKNOWLEDGMENT

This work has been partially funded by the EC H2020-
ICT-19-2016-2 76199 EasyTV project and the Spanish
CDTI-Ministry for Science and Innovation, within the

framework of the project LPS-Bigger (EXP
00064563/ITC-20133062).

ABOUT THE AUTHORS

Francisco Moreno (fmg@gatv.ssr.upm.es) is a
predoctoral researcher at Universidad Politécnica de
Madrid (UPM). His research interest includes mobile
apps and machine learning.
Silvia Uribe (sum@gatv.ssr.upm.es) is a post-doctoral
researcher at UPM. Her research interests include big data
and UX/UI technologies.
Federico Álvarez (fag@gatv.ssr.upm.es) is an Assistant
Professor at UPM. During the last 10 years he has
coordinated UPM participation in several EU-funded
projects. He is author and co-author of (70+) international
papers.
José Manuel Menéndez (jmm@gatv.ssr.upm.es) is Full
Professor at UPM and GATV Research Group Director.
He has participated and coordinated more than 150
national and European research projects. He authored
more than 200 research papers and 3 international patents.

REFERENCES
[1] KAUR, Satwant. The revolution of tablet computers and apps: A look at

emerging trends. IEEE Consumer Electronics Magazine, 2013, vol. 2, no
1, p. 36-41

[2] S. Van Canneyt, M. Bron, A. Haines, and M. Lalmas, “Describing
Patterns and Disruptions in Large Scale Mobile App Usage Data”.
In Proceedings of the 26th International Conference on World

Wide Web Companion (WWW '17 Companion). International
World Wide Web Conferences Steering Committee, Republic and
Canton of Geneva, Switzerland, 1579-1584, 2017.

[3] S. Seneviratne, H. Kolamunna, and A. Seneviratne, “A
measurement study of tracking in paid mobile applications”. In
Proceedings of the 8th ACM Conference on Security & Privacy

in Wireless and Mobile Networks (WiSec '15). ACM, New York,
NY, USA, Article 7, 6 pages. 2015.

[4] D. Contreras, M. Salamo, I. Rodriguez and A. Puig, "Shopping
Decisions Made in a Virtual World: Defining a State-Based
Model of Collaborative and Conversational User-Recommender
Interactions," in IEEE Consumer Electronics Magazine, vol. 7,
no. 4, pp. 26-35, July 2018.

[5] X. Li, Z. Zhang and J. Nummenmaa, "Models for mobile
application maintenance based on update history" 2014 9th

International Conference on Evaluation of Novel Approaches to

Software Engineering (ENASE), Lisbon, Portugal, 2014, pp. 1-6.
[6] B. Hunt, B. Turner and K. McRitchie, "Software Maintenance

Implications on Cost and Schedule," 2008 IEEE Aerospace Conference,
Big Sky, MT, 2008, pp. 1-6.

[7] IEEE. “IEEE standard for software maintenance”. IEEE STD.
1219-1998, pages 1-3.

[8] Ferre, X., Villalba, E., Julio, H., & Zhu, H. (2017, September). Extending
Mobile App Analytics for Usability Test Logging. In IFIP Conference on

Human-Computer Interaction (pp. 114-131). Springer, Cham.
[9] Ravindranath, L., Padhye, J., Agarwal, S., Mahajan, R., Obermiller, I., &

Shayandeh, S. (2012, October). AppInsight: Mobile App Performance
Monitoring in the Wild. In OSDI (Vol. 12, pp. 107-120).

[10] M. Nayebi, B. Adams and G. Ruhe, "Release Practices for Mobile
Apps -- What do Users and Developers Think?," 2016 IEEE 23rd

International Conference on Software Analysis, Evolution, and

Reengineering (SANER), 2016, pp. 552-562.
[11] G. Kiczales et al, “Aspect-oriented programming”. ECOOP'97 —

Object-Oriented Programming. ECOOP 1997. Lecture Notes in

Draf
t. P

rep
rin

t c
op

y

IEEE CONSUMER ELECTRONICS MAGAZINE

6

Computer Science, vol 1241. Springer, Berlin, Heidelberg. Akşit
M., Matsuoka S.

[12] F. Munoz, B. Baudry, R. Delamare and Y. Le Traon, "Inquiring
the usage of aspect-oriented programming: An empirical study,"
2009 IEEE International Conference on Software Maintenance,
Edmonton, AB, 2009, pp. 137-146.

[13] ADINATA, Muhammad; LIEM, Inggriani. A/B test tools of
native mobile application. En 2014 International Conference on
Data and Software Engineering (ICODSE). IEEE, 2014. p. 1-6..

[14] Y. C. Yu, S. c. D. You and D. R. Tsai, "An intelligent Aspect-
Oriented framework for web application," INC2010: 6th

International Conference on Networked Computing, Gyeongju,
Korea (South), 2010, pp. 1-5.

[15] R. Laddad, “Aspect-oriented programming will improve quality”,
IEEE Software, 2003, vol. 20, no.6, pp 90-91

Draf
t. P

rep
rin

t c
op

y

